Processing math: 100%

Pages

Monday, January 5, 2015

Complex Multiplication/Division

Given:
z_1=a_1+jb_1=\left|z_1\right|e^j\theta_1
z_2=a_2+jb_2=\left|z_2\right|e^j\theta_2

Q1: What is z_1z_2 in Cartesian form?
A1: Using the FOIL method and collecting the real and imaginary parts:
z_1z_2=(a_1a_2-b_1b_2)+j(a_1b_2+a_2b_1)

Q2: What is z_1z_2 in polar form?
A2: z_1z_2=\left|z_1\right|\left|z_2\right|e^{j(\theta_1+\theta_2)}

Q3: What is \frac{z_1}{z_2} in Cartesian form?
A3: Multiplying both the numerator and denominator by z_2^*:
\frac{z_1}{z_2}=\frac{(a_1a_2+b_1b_2)+j(a_2b_1-a_1b_2)}{a_2^2+b2_2}

Q4: What is \frac{z_1}{z_2} in polar form?
A4: \frac{z_1}{z_2}=\frac{\left|z_1\right|}{\left|z_2\right|}e^{j(\theta_1-\theta_2)}

No comments:

Post a Comment