Processing math: 0%

Pages

Thursday, January 29, 2015

Power Reduction Formula

Q1: How can I simplify cos^2(x)?
A1: Recall that Euler's formula implies that:
cos(x)=\frac{1}{2}(e^{jx}+e^{-jx})

Hence,
cos^2(x)=\frac{1}{4}(e^{jx}+e^{-jx})^2
cos^2(x)=\frac{1}{4}(e^{2jx}+2+e^{-2jx})
cos^2(x)=\frac{1}{2}(\frac{e^{2jx}+e^{-2jx}}{2}+1)
cos^2(x)=\frac{1}{2}(cos(2x)+1)
cos^2(x)=\frac{1+cos(2x)}{2}

Q2: How can I simplify sin^2(x)?
A2: Using similar logic as in A1:
sin(x)=\frac{1}{2j}(e^{jx}-e^{-jx})

Hence,
sin^2(x)=-\frac{1}{4}(e^{jx}-e^{-jx})^2
sin^2(x)=-\frac{1}{4}(e^{2jx}-2+e^{-2jx})
sin^2(x)=-\frac{1}{2}(\frac{e^{2jx}+e^{-2jx}}{2}-1)
sin^2(x)=-\frac{1}{2}(cos(2x)-1)
sin^2(x)=\frac{1-cos(2x)}{2}

Q3: How can I simplify tan^2(x)?
A3: Using the results of A1 and A2:
tan(x)=\frac{sin(x)}{cos(x)}
tan^2(x)=\frac{sin^2(x)}{cos^2(x)}
tan^2(x)=\frac{1-cos(2x)}{1+cos(2x)}

No comments:

Post a Comment