What is the complete solution for the current i(t) through the circuit?
A: By KVL:
v_{in}(t)=v_R+v_C
v_{in}(t)=Ri(t)+v_C
Differentiating both sides:
\frac{dv_{in}(t)}{dt}=R\frac{di(t)}{dt}+\frac{dv_C}{dt}
From the definition of a capacitor:
\frac{dv_{in}(t)}{dt}=R\frac{di(t)}{dt}+\frac{1}{C}i(t)
C\frac{dv_{in}(t)}{dt}=RC\frac{di(t)}{dt}+i(t)
Defining a time constant \tau \equiv RC:
C\frac{dv_{in}(t)}{dt}=\tau \frac{di(t)}{dt}+i(t)
\tau \frac{di(t)}{dt}+i(t)=C\frac{dv_{in}(t)}{dt}
i(t)=?
i(t)=i_h(t)+i_f(t)
i_h(t)=?
\tau \frac{di_h(t)}{dt}+i_h(t)=0
Suppose i_h(t)=Ae^{st}:
\tau sAe^{st}+Ae^{st}=0
Since e^{st} \neq 0:
\tau sA+A=0
Since we are looking for a non-trivial solution - i.e. A \neq 0:
\tau s + 1 =0
s = -\frac{1}{\tau}
i_h(t)=Ae^{-\frac{t}{\tau}}
i_f(t)=?
In this post, a basic method will be used to solve the zero-state solution for current. But a method using complex numbers is examined in another post.
\tau \frac{di_f(t)}{dt}+i(t)=C\frac{dv_{in}(t)}{dt}
\tau \frac{di_f(t)}{dt}+i(t)=v_{in}\omega Ccos(\omega t)
For cleaner notation, let K \equiv v_{in}\omega C
\tau \frac{di_f(t)}{dt}+i(t)=Kcos(\omega t)
Suppose i_f(t)=Dcos(\omega t)+Esin(\omega t)
-D \omega \tau sin(\omega t)+E \omega \tau cos(\omega t)+Dcos(\omega t)+Esin(\omega t)=Kcos(\omega t)
(E-D \omega \tau) sin(\omega t)+(D+E \omega \tau) cos(\omega t)=Kcos(\omega t)
\begin{cases} E-D \omega \tau = 0 \\ D+E \omega \tau=K \end{cases}
E=D \omega \tau
D+D \omega^2 \tau^2=K
D=\frac{K}{\omega^2 \tau^2}
i_f(t)=\frac{K}{\omega^2 \tau^2}(cos(\omega t)+\omega\tau sin(\omega t))
i_f(t)=\frac{v_{in}\omega C}{\omega^2 \tau^2}(cos(\omega t)+\omega\tau sin(\omega t))
\tau \frac{di_f(t)}{dt}+i(t)=C\frac{dv_{in}(t)}{dt}
\tau \frac{di_f(t)}{dt}+i(t)=v_{in}\omega Ccos(\omega t)
For cleaner notation, let K \equiv v_{in}\omega C
\tau \frac{di_f(t)}{dt}+i(t)=Kcos(\omega t)
Suppose i_f(t)=Dcos(\omega t)+Esin(\omega t)
-D \omega \tau sin(\omega t)+E \omega \tau cos(\omega t)+Dcos(\omega t)+Esin(\omega t)=Kcos(\omega t)
(E-D \omega \tau) sin(\omega t)+(D+E \omega \tau) cos(\omega t)=Kcos(\omega t)
\begin{cases} E-D \omega \tau = 0 \\ D+E \omega \tau=K \end{cases}
E=D \omega \tau
D+D \omega^2 \tau^2=K
D=\frac{K}{\omega^2 \tau^2}
i_f(t)=\frac{K}{\omega^2 \tau^2}(cos(\omega t)+\omega\tau sin(\omega t))
i_f(t)=\frac{v_{in}\omega C}{\omega^2 \tau^2}(cos(\omega t)+\omega\tau sin(\omega t))
No comments:
Post a Comment