Processing math: 100%

Pages

Monday, January 5, 2015

Maclaurin Series for Sine and Cosine

Q1: What is the Maclaurin series for cosx?
A1: cosx=1-\frac{x^2}{2}+\frac{x^4}{4!}-\frac{x^6}{6!}+...
cosx=\sum\limits_{n=0}^\infty \frac{(-1)^nx^n}{2n!}

Q2: What is the Maclaurin series for sinx?
A2: sinx=x-\frac{x^3}{3!}+\frac{x^5}{5!}-\frac{x^7}{7!}+...
sinx=\sum\limits_{n=0}^\infty \frac{(-1)^nx^n}{(2n+1)!}

No comments:

Post a Comment