Q1: How can e^{j\theta} be expressed in terms of trigonometric functions?
A1: e^{j\theta} can be simplified using a Maclaurin series:
Let \theta \to x:
\Rightarrow e^{j\theta} \to e^{jx}
e^{jx}=\sum\limits_{n=0}^n \frac {j^nx^n}{n!}
Expanding the Maclaurin series:
e^{jx}=1+jx-\frac{x^2}{2}-j\frac{x^3}{3!}+\frac{x^4}{4!}+j\frac{x^5}{5!}-\frac{x^6}{6!}-j\frac{x^7}{7!}+...
Collecting real and imaginary coefficients:
e^{jx}=[1-\frac{x^2}{2}+\frac{x^4}{4!}-\frac{x^6}{6!}+...]+[j(x-\frac{x^3}{3!}+\frac{x^5}{5!}-\frac{x^7}{7!}+...)]
Note that the expressions in the square brackets are the Maclaurin expansions of cosx and sinx
e^{jx}=cosx+jsinx
e^{j\theta}=cos\theta+jsin\theta
Q2: What's the expression for e^{-j\theta}?
A2: Let j \to -j:
e^{-j\theta}=cos\theta+jsin\theta
Q3: Is there one equation that encapsulates the results from A1 and A2?
A3: e^{\pm j\theta}=cos\theta\pm jsin\theta
No comments:
Post a Comment